Multi-Objective Optimization Framework for Offshore Wind Farms

Sílvio Miguel Fragoso Rodrigues
PhD Student, TU Delft
Contents

• Offshore Wind Energy
 • Drawbacks
 • Key opportunities
• Multi-Objective Optimization Framework
 • Requirements
 • Selection criteria
 • Selected and discarded goals
• Preliminary results
• Conclusions
Offshore Wind Energy

Vindeby
(1991)

Gwynt y Môr
(2014)
Offshore Wind Energy

Drawbacks

• OWFs use adapted products from other fields.
 • onshore wind turbines
 • foundations designed using oil&gas industry standards.

• Designing a large offshore wind project is a very complex task
 • Manual layout optimization and cable routing

• The design is based in a sequential approach.
 • interactions are disregarded.
 • early project decisions may become constraints in later stages.

Higher costs when compared to onshore projects with similar capacities!
Key Opportunities

- Larger turbines with improved reliability and lower operation costs;
- Greater activity at the Front End Engineering and Design (FEED);
- More use of geotechnical and geophysical surveying;
- Greater competition in key supply markets;
- Economies of scale and greater standardization;
- Optimization of installation methods;
- Products specifically designed for offshore wind environments;
- Mass produced deeper water support structures.
Increased need for FEED

- More complex and larger wind farm sites
- More wind turbines and more complex collection systems;
- Unexpected costs during the installation phase;
- The availability of a wider range of technology.
How to design a multi-objective optimization framework for offshore wind farm electrical infrastructures?
Framework Requirements

• Several requirements must be fulfilled:
 • Modularity
 • Models independency.
 • The optimization algorithm should also be easily replaced.
 • Standardization
 • The input/output of the models should be standard: plug&play.
 • Expansibility
 • New models should be included in a straightforward manner.
Optimization goals: selection criteria

- Topic Relevance
 - Onshore \neq offshore (e.g. noise, shadow flickering)

- Wind farm efficiency impact
Selected Optimization Goals

• **Wind farm efficiency**
 • Wake losses

• **Electrical losses**
 • Shortest cable routings
 • Cable routing considering the sea depth / ambient temperature.
 • Location of the offshore substation.

• **Turbine**
 • Number of Wind Turbines
 • Turbine selection
Selected Optimization Goals

• **Investment Costs**
 - Support structure costs

• **Cable costs**
 - Cables with different cross sections.

• Cable installation costs
Selected Optimization Goals

- **Operation & Maintenance Costs**
 - Wind farm area
 - seabed rent
 - Fatigue loads
 - lower maintenance costs.
Discarded Optimization Goals

- Operations & maintenance
 - Construction, operational and decommissioning phases of wind projects are not considered.

- Installation methods & Logistics
 - Transportation and installation of the OWF components are not considered.
Discarded Optimization Goals

- Environmental Impacts

<table>
<thead>
<tr>
<th>Physical</th>
<th>Biological</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspended Solids</td>
<td>Birds</td>
<td>Visual impact</td>
</tr>
<tr>
<td>Scour</td>
<td>Seabed habitats</td>
<td>Shipping and navigation</td>
</tr>
<tr>
<td>Sediment Transport</td>
<td>fish & shellfish</td>
<td>Oil & gas</td>
</tr>
<tr>
<td>Waves and tides</td>
<td>Marine mammals</td>
<td>Shadow flicker</td>
</tr>
<tr>
<td>Water quality</td>
<td>Nature conservation</td>
<td>Tourism and recreation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dredging and disposal areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Archaeology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commercial fishing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Military activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Munitions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aviation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mobile communication links</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noise</td>
</tr>
</tbody>
</table>
Framework boundaries

- A pre-selection of components was performed;
- The wind farm area is selected;
- The number of substations is defined.
Framework input data

- Wind rose
- Pre-selected components data
- Wind farm and export corridor seabed information
- Location of the landfall point
- The maximum water depth for turbines, substations and cables
Preliminary Results
Case study

- Wind farm with a square shape: 5 km x 5 km
- 36 turbines (6.15 MW each).
Seabed profile
Discretization and constraints

Seabed discretization

Unfeasible areas

Restricted zones of the wind farm area

- Seabed gradient
- Minimum separation between OWTs
- Maximum water depth
Results

<table>
<thead>
<tr>
<th></th>
<th>Standard layout</th>
<th>Optimized layout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unconstrained</td>
<td>Constrained</td>
</tr>
<tr>
<td>Wind farm efficiency</td>
<td>80.77%</td>
<td>+13.46%</td>
</tr>
<tr>
<td>Collection system cable length</td>
<td>30 km</td>
<td>+4.6%</td>
</tr>
</tbody>
</table>

Diagrams

Constrained and unconstrained cable routing – Standard layout

Constrained and unconstrained cable routing – Optimized layout
3D plot
Future work

• Loss models for all the components
• Variable number of turbines
• Fatigue loads
• Collection system (different cross sections)
Multi-Objective Optimization Framework for Offshore Wind Farms

Sílvio Miguel Fragoso Rodrigues
PhD Student, TUDelft

Thank you
Questions?